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Introduction

ou hold in your hands, either physically or electronically, the seventh edition of

the Master Handbook of Acoustics. Mr. F. Alton Everest was the original author of

this book. In 1981 he devised the formula for an acoustics book that balanced
theory and practice. Many engineering books sprinkle examples and problems
throughout the text, to inform the reader of practical applications. He improved on that
model by presenting basic theory combined with a significant quantity of pragmatic
information, then attaching entire chapters, comprising a substantial portion of the
book, that are purely devoted to practical examples. These chapters are particularly
essential for anyone building a room with similar characteristics.

Mr. Everest understood that this was the perfect way to teach introductory acoustics
while simultaneously providing practical guidance to anyone undertaking a
construction project. He thus created a valuable tool that we know and trust, a book
that has become a classic. The acoustical engineering community grieved when
Mr. Everest passed away in 2005 at the age of 95.

I was honored when McGraw-Hill asked me to prepare a fifth, a sixth, and now this
seventh edition of the Master Handbook of Acoustics. I had used the handbook since it
was first published, and was well familiar with its value as a teaching text and reference
handbook. Readers who are familiar with another of my books, Principles of Digital
Audio, may be surprised to learn that my passion for digital technology is equaled by
my enthusiasm for acoustics. I taught courses in architectural acoustics (in addition to
classes in digital audio) for 30 years at the University of Miami, where I directed the
Music Engineering Technology program. Throughout that time, I also consulted on
many acoustics projects, ranging from recording studio to listening room design, from
church acoustics to community noise intrusion. As with many practitioners in the field,
it was important for me to understand the fundamentals of acoustical properties, to be
able to articulate those principles to clients, and also to stay current with the practical
applications and solutions to today’s acoustical problems. This essential equilibrium
was the guiding principle of Mr. Everest’s original vision for this book, and I have
continued to seek that same balance. Further, through Mr. Everest’s four editions, and
my three editions, this book has improved steadily to reach a high level of refinement.

Occasionally, and particularly among newbies to the field of acoustics, the question
arises, “Why is it important to study acoustics?” One reason, among many, is that you
will be joining in, and hopefully contributing to, a noble scientific undertaking. Since
antiquity, some of the world’s greatest scientists and engineers have studied acoustics
and its elegant complexities. Greek philosophers including Pythagoras, Aristotle, and
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Introduction

Euclid began the exploration of the nature of musical harmonics and how we hear
sound. The great Roman engineer and architect Vitruvius carefully analyzed echo and
reverberation in his building projects. Over the years, heavyweights such as Ptolemy,
Galileo, Mersenne, Kircher, Hooke, Newton, Laplace, Euler, D’Alembert, Bernoulli,
Lagrange, Poisson, Faraday, Helmholtz, Ohm, Doppler, and Sabine all made
contributions. In all, countless men and women have worked to evolve the science of
acoustics to a high degree of sophistication.

But, pressing the question, in today’s binary world, is acoustics still important?
Consider this: We rely on our eyes and ears. Our eyes close when we sleep; we cannot
see in the dark; someone can sneak up on us unseen from behind. But from birth to
death, awake or asleep, in light and in dark, our ears are always sensitive to our world
around us. Whether we are hearing sounds that give us pleasure, or sounds that alert
us to danger, whether they are sounds of nature, or sounds of technology, the properties
of acoustics and the way that architectural spaces affect those sounds are woven into
every moment of our lives. Is acoustics important? I think it is. And I'm pretty sure
Mzr. Everest would agree.

Ken C. Pohlmann



CHAPTER 1

Fundamentals
of Sound

ound can be considered as wave motion in air or other elastic media. In this case,

sound acts as a stimulus. Sound can also be considered as an excitation of the

hearing mechanism that results in its perception. In this case, sound is a sensation.
This duality of sound is familiar to those interested in audio and music. The type of
problem at hand dictates our approach. If we are interested in the physical disturbance
of the air in a room, it is a problem of physics. If we are interested in how that distur-
bance is perceived by a person listening in the room, psychoacoustical methods must be
used. Because this book addresses acoustics in relation to people, both aspects of sound
will be considered. That being said, because we are primarily interested in how room
materials and geometry affect the disturbance, our investigations will mainly deal with
physics.

Sound can be characterized by objective phenomena. For example, frequency is an
objective property of sound; it specifies the number of waveform repetitions per unit of
time (usually 1 second). Frequency can be readily measured on an oscilloscope or a fre-
quency counter. From a physics standpoint, the concept of frequency is straightforward.
We will have much more to say about the objective qualities of sound, particularly in the
way that the properties of sound are dictated by the rooms we inhabit.

On the other hand, that rate of repetition can be characterized subjectively. Frequency
is then considered in terms of pitch, which is a subjective property of sound. Perceptually,
we hear different pitches for soft and loud 100-Hz tones. As intensity increases, the
pitch of a low-frequency tone goes down, while the pitch of a high-frequency tone goes
up. Harvey Fletcher found that playing pure tones of 168 and 318 Hz at a modest level
produces a very discordant sound. At a high intensity, however, the ear hears pure
tones in the 150- to 300-Hz octave relationship as a pleasant sound. We cannot equate
frequency and pitch, but they are analogous. Another objective/subjective duality
exists between intensity and loudness. Similarly, the relationship between waveform
(or spectrum) and perceived quality (or timbre) is not linear. A complex waveform can
be described in terms of a fundamental and a series of harmonics of various amplitudes
and phases. But perception of timbre is complicated by the frequency-pitch interactions
in the human hearing mechanism as well as other factors.

The interaction between the physical properties of sound, and our perception of
them, poses delicate and complex issues. It is this complexity in audio and acoustics
that creates such interesting problems. On one hand, the design of a loudspeaker or a con-
cert hall should be a straightforward and objective engineering process. But in practice,
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that objective expertise must be carefully tempered with purely subjective wisdom.
As has often been pointed out, loudspeakers are not designed to play sine waves into
calibrated microphones placed in anechoic chambers. Instead, they are designed to play
music in our listening rooms. In other words, the study of audio and acoustics involves
both art and science. To learn the complexities of audio and acoustics, we begin with the
science, keeping in mind that our ears will ultimately determine the success or failure
of our projects.

Simple Harmonic Motion and the Sine Wave

The weight (mass) and the spring shown in Fig. 1-1 comprise a vibrating system.
Moreover, the weight moves in what is called simple harmonic motion. When the
weight is at rest, the system is said to be in equilibrium. If the weight is pulled down to
the -5 mark and released, the spring pulls the weight back toward 0. However, the
weight will not stop at 0; its inertia will carry it beyond 0 almost to +5. The displacement
of the weight defines the amplitude of the motion.

The weight will continue to vibrate, or oscillate. Each up/down repetition is called
a cycle, and the motion is said to be periodic. In the arrangement of a mass and a spring,
vibration or oscillation is possible because of the elasticity of the spring and the inertia
of the weight. Elasticity and inertia are two things all media must possess to be capable
of conveying sound. In this practical example, the amplitude of motion will slowly
decrease due to frictional losses in the spring and the air around it.

Harmonic motion is a basic type of oscillatory motion, and it yields an equally basic
wave shape in sound and electronics. To illustrate this, if a pen is fastened to the weight’s
pointer, as shown in Fig. 1-2, and a strip of paper is moved past it at a uniform speed,
the resulting trace is a sine wave. The sine wave is a pure waveform closely related to
simple harmonic motion. In this figure, the sine wave traced by the pen has completed
one full period and is more than halfway through a second period. The periodic motion
of the weight will continue to trace the sine wave indefinitely. (For a moment, we are
ignoring the frictional losses that would decrease amplitude.) This simple oscillatory
system will always create sinusoidal motion; without outside forces, no other motion is

+
a1

o
Innn
=
Amplitude

&

Fieure 1-1 A weight on a spring vibrates at its natural frequency because of the elasticity of the
spring and the inertia of the weight.
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Ficure 1-2 A pen fastened to the vibrating weight traces a sine wave on a paper strip moving at
a uniform speed. This shows the basic relationship between simple harmonic motion and the
sine wave.

possible with this system. However, this graph of a sine wave, showing amplitude versus
time, sets precedence for plotting many different wave shapes.

As another example of oscillatory motion, consider a piston in an internal-combustion
automobile engine that is connected to the crankshaft by a connecting rod. The rotation
of the crankshaft and the up-and-down motion of the pistons illustrate the relationship
between rotary motion and linear simple harmonic motion. As with the weight on a
spring, the piston position plotted against time produces a sine wave.

Sound in Media

The weight and spring system in the previous example models the motion of air
molecules. If an air particle is displaced from its original position, elastic forces of the
air tend to restore it to its original position. Because of the inertia of the particle, it over-
shoots the resting position, bringing into play elastic forces in the opposite direction,
and so on.

An elastic medium is essential to the existence of sound waves. Because air is such
a common agent for the conduction of sound, it is easy to forget that other media are
also conductors of sound. Thus, sound is readily conducted in gases, liquids, and solids
such as air, water, steel, concrete, and so on, which are all elastic media. Imagine a rail-
road track; a friend stationed a distance away strikes a rail with a rock. You will hear
two sounds, one sound coming through the rail and one through the air. The sound
through the rail arrives first because the speed of sound in steel is faster than in air.
Similarly, liquids can be very efficient conductors of sound; underwater sounds can be
detected after traveling thousands of miles through the ocean.

Without a medium, sound cannot be propagated. In the laboratory, an electric
buzzer is suspended in a heavy glass bell jar. As the button is pushed, the sound of the
buzzer is readily heard through the glass. As the air is pumped out of the bell jar, the
sound becomes fainter and fainter until it is no longer audible. The sound-conducting
medium, the air inside the jar, has been removed between the source and the ear. Outer
space is an almost perfect vacuum; no sound can be conducted except in the tiny island
of atmosphere within a spaceship or a spacesuit.
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Particle Motion

Waves created by the wind travel across a field of grain, yet the individual stalks remain
firmly rooted as the wave travels on. In a similar manner, particles of air propagating a
sound wave do not move far from their undisplaced positions, as shown in Fig. 1-3. The
disturbance travels on, but the propagating particles move only in localized regions
(with perhaps a maximum displacement of a few ten-thousandths of an inch). Note also
that the velocity of a particle is maximum at its equilibrium position, and zero at the
points of maximum displacement (a pendulum has the same property). The maximum
velocity is called the velocity amplitude, and the maximum displacement is called the
displacement amplitude. The maximum particle velocity is very small, less than 0.5 in/sec
for even a loud sound. As we will see, to lower the level of a sound, we must reduce the
particle velocity.

There are three distinct forms of particle motion. For sound traveling in a gaseous
medium such as air, the particles move in the direction the sound is traveling. This
motion is described as longitudinal waves, which expand and contract in the direction
of propagation, as shown in Fig. 1-4A. As we will see, this oscillation causes high- and
low-pressure regions. The instantaneous pressure on opposite sides of a pressure mini-
mum has opposite polarity. The pressure on one side is increasing, whereas the pres-
sure on the other side is decreasing. A second type of wave motion is illustrated by a
violin string, as shown in Fig. 1-4B. The tiny elements of the string move transversely,
or at right angles to the direction of travel of the waves along the string. Thirdly, if a
stone is dropped on a calm water surface, concentric waves travel out from the point of
impact, and the water particles trace circular orbits (for deep water, at least), as shown

in Fig. 1-4C.
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Ficure 1-3 An air particle is made to vibrate about its equilibrium position by the energy of a
passing sound wave because of the interaction of the elastic forces of the air and the inertia of
the air particle.
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Ficure 1-4 Particles involved in the propagation of sound waves can move with (A) longitudinal
motion in air, (B) transverse motion on a string, or (C) circular motion on the water surface.

Propagation of Sound

How are air particles, moving slightly back and forth, able to carry music from a loud-
speaker to our ears? The dots of Fig. 1-5 represent air molecules with different density
variations. The molecules crowded together represent areas of compression (crests in
the wave shape) in which the air pressure is slightly greater than the prevailing atmo-
spheric pressure (typically about 14.7 Ib/in? at sea level). The sparse areas represent
rarefactions (troughs in the wave shape) in which the pressure is slightly less than
atmospheric pressure. The arrows (see Fig. 1-5) indicate that, on average, the molecules
are moving to the right of the compression crests and to the left in the rarefaction
troughs between the crests. Any given molecule, because of elasticity, after an initial
displacement, will return toward its original position. It will move a certain distance to
the right and then approximately the same distance to the left of its undisplaced posi-
tion as the sound wave progresses uniformly to the right. Sound propagates because of
the transfer of momentum from one particle to another.

In this example, why does the sound wave move to the right? The answer is revealed
by a closer look at the arrows (see Fig. 1-5). The molecules tend to bunch up where two
arrows are pointing toward each other, and this occurs a bit to the right of each com-
pression region. When the arrows point away from each other, the density of molecules
decreases. Thus, the movement of the higher-pressure crest and the lower-pressure
trough accounts for the progression of the sound wave to the right.

As mentioned previously, the pressure at the crests is higher than the prevailing
atmospheric barometric pressure and lower than the atmospheric pressure at the
troughs, as shown in the sine wave of Fig. 1-6. These fluctuations of pressure are very
small indeed. The faintest sound the ear can hear (20 puPa) exists at a pressure some
5,000 million times smaller than atmospheric pressure. To summarize, typical sounds
such as speech and music are represented by correspondingly small ripples in pressure
superimposed on the atmospheric pressure.
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Fieure 1-5 Sound waves traveling through a medium change the localized air particle density.
(A) A sound wave causes the air particles to be pressed together (compression) in some regions and
spread out (rarefaction) in others. (B) An instant later the sound wave has moved slightly to the right.
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Ficure 1-6 Pressure variations of sound waves are superimposed on prevailing barometric
pressure. (A) An instantaneous view of the compressed and rarefied regions of a sound wave in
air. (B) The compressed regions are very slightly above and the rarefied regions very slightly
below atmospheric pressure.
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Speed of Sound | Speed of Sound
Medium (ft/sec) (m/sec)
Air 1,130 344
Distilled water 4,915 1,498
Seawater 5,023 1,531
Wood, fir 12,470 3,800
Steel bar 16,570 5,050
Gypsum board 22,310 6,800

TaeLe 1-1 Examples of Speed of Sound in Different Materials

Speed of Sound

The speed of sound in air is about 1,130 ft/sec (344 m/sec) at 70°F (21°C). This is about
770 mi/hr (1,239 km/hr). In the field of aerodynamics, this speed is known as Mach 1.0
(technically, it is air speed relative to the local speed of sound). This speed is not par-
ticularly fast in relation to familiar things. For example, commercial aircraft routinely
travel at speeds that approach the speed of sound; for example, a Boeing 787 jetliner has
a cruising speed of 561 mi/hr (Mach 0.85). The speed of sound is dramatically slower
than the speed of light (670,616,629 mi/hr). It takes about 5 seconds for sound to travel
1 mile. You can gauge the distance of a thunderstorm by counting the time between the
sight of the lightning flash and the sound of its thunder; if you count to 5 seconds, the
storm is about a mile away. The speed of sound in the audible range is appreciably
affected by temperature and slightly affected by humidity. It is not appreciably affected
by the intensity of sound, its frequency, or by changes in atmospheric pressure. In some
cases, some factors that would otherwise affect the speed of sound are offset by other
factors, yielding insignificant changes.

Sound will propagate at a certain speed that depends on the medium and other
factors. Other properties being equal, the stiffer or more rigid a medium, or the less
compressible it is, the faster the speed of sound in it. Generally, sound travels faster in
liquids than in air, and it travels faster in solids than in liquids. For example, sound
travels at about 5,023 ft/sec in seawater and about 16,570 ft/sec in steel. Other exam-
ples are shown in Table 1-1. As noted, sound also travels faster in air as temperature
increases (an increase of about 1.1 ft/sec for every degree Fahrenheit). Finally, humidity
slightly affects the speed of sound in air; the more humid the air, the faster the speed. It
should be noted that the speed (velocity) of sound is different from the particle velocity.
The speed (velocity) of sound determines how fast sound energy moves through a
medium. Particle velocity is determined by the loudness of the sound.

Wavelength and Frequency

A sine wave is illustrated in Fig. 1-7. The wavelength A is the distance a wave travels
in the time it takes to complete one cycle. A wavelength can be measured between suc-
cessive peaks or between any two corresponding points on the cycle. This also holds
for periodic waves other than the sine wave. The frequency f specifies the number of
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Wavelength
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Ficure 1-7 Wavelength is the distance a wave travels in the time it takes to complete one cycle.
It can also be expressed as the distance from one point on a periodic wave to the corresponding
point on the next cycle of the wave.

cycles per second, measured in hertz (Hz). Frequency and wavelength are related as
follows:

_ Speed of sound (ft/sec)
Wavelength (ft) = Frequency (E12) (1-1)
which can also be written as
Frequency (Hz) = Speed of sound (ft/sec) (1-2)

Wavelength (ft)

Asnoted, the speed of sound in air is about 1,130 ft/sec at normal conditions. For sound
traveling in air, Eq. (1-2) becomes

1,130

Frequency (Hz) (1-3)

Wavelength (ft) =

This relationship is perhaps the most fundamentally important relationship in audio.
Figure 1-8 gives two approaches for a graphical solution to Eq. (1-3).

Complex Waveforms

Speech and music wave shapes depart radically from the simple sine wave and are
considered as complex waveforms. However, no matter how complex the waveform is,
as long as it is periodic, it can be reduced to sine components. The obverse of this states
that any complex periodic waveform can be synthesized from sine waves of different
frequencies, different amplitudes, and different time relationships (phase). Joseph
Fourier was the first to prove these relationships. The idea is simple in concept but often
complicated in its application to specific speech or musical sounds. Let us see how a
complex periodic waveform can be reduced to simple sinusoidal components.

Harmonics

A simple sine wave of a given amplitude and frequency, f,, is shown in Fig. 1-9A.
Figure 1-9B shows the second harmonic sine wave f, that is twice the frequency and
half the amplitude of f,. Combining f, and f, at each point in time, the wave shape of
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Ficure 1-8 Wavelength and frequency are inversely related. (A) Scales for approximately
determining wavelength of sound in air from a known frequency or vice versa. (B) A chart for
determining the wavelength in air of sound waves of different frequencies. (Both are based on the
speed of sound of 1,130 ft/sec.)

Fig. 1-9C is obtained. Figure 1-9D shows the third harmonic sine wave f, that is three
times the frequency and half the amplitude of f,. Adding this to the f, + f, wave shape
of C, Fig. 1-9E is obtained. The simple sine wave of Fig. 1-9A has been progressively
changed as other sine waves have been added to it; this is valid for both acoustic waves
and electronic signals. The process can be reversed. The complex waveform of Fig. 1-9E
can be disassembled, as it were, to the simple f,, f,, and f, sine components by either
acoustic or electronic filters. For example, passing the waveform of Fig. 1-9E through a
filter permitting only f, and rejecting f, and f,, the original f, sine wave of Fig. 1-9A
emerges in pristine condition.



